О флюсовании и российской продукции для пайки

СВЕТЛАНА ПЕСКОВА

Нанесение флюса, как подготовительный момент пайки, является фундаментом ее качества и прочности паяного узла. Таким образов, выбор флюса занимает важное значение в технологическом процессе любого производства. В данной статье мы расскажем о линейке флюсов отечественного производства – компании «Изагри».

Вначале о флюсах в общих чертах. Данный материал предназначен для обеспечения хорошей смачиваемости места пайки, позволяя жидкому припою легко растекаться, а также защиты металлов от возникновения оксидных пленок. Ответственный за правильное «высаживание» атомов припоя на поверхность пайки, за изменение поверхностного натяжения расплавленного припоя и увеличение смачиваемости поверхности, без него припой будет собираться в виде шариков. С хорошим же флюсом припой заливает все прогретые участки.

Таким образом, основной задачей флюса является очистка паяемой поверхности с целью снижения поверхностного натяжения и улучшения растекания жидкого припоя. При этом качество реакции с припоем флюсу обеспечивают кислотные свойства при высокой температуре пайки. Например, канифоль при комнатной температуре совершенно нейтральна, и только при нагревании проявляются ее кислотные свойства. Поэтомуто и не существует бескислотных флюсов, бывают лишь флюсы с разной кислотной активностью. И чем выше эта активность, тем лучше растворяются оксидные пленки и тем ниже безопасность остатков флюса. Важно отметить, что к минимальному количеству остатков флюса после пайки предъявляются особые требования, так как это гарантирует хорошую косметику печатной платы и качественное проведение дальнейших испытаний на наличие дефектов при пайке компонентов.

По остаткам пайки флюсы разделяют на водорастворимые и требующие смывки. По активности – на флюсы высокой, средней и низкой активности. По форме – пастообразные, гелеобразные и жидкие.

Еще одной важной характеристикой флюса является наличие в нем галогенов, которые оказывают агрессивное

Таблица 1. Классификация флюса согласно IPC J-STD-004A [1]

Входящие в состав флюса вещества	Обозначение флюса	Уровень активности флюса (% галогенидов)/ тип флюса	Примечание		
Канифоль (RO)	ROLO	Низкий (0%)/L0	Флюсы, основанные на канифоли, растворимы в привычной спиртобензиновой смеси и большинстве других отмывочных жидкостей. Канифоль обладает слабыми флюсующими свойствами (т.е. способна паять сама даже в отсутствие активатора). Она растворима в большинстве полярных органических растворителей и смесях полярных и неполярных растворителей, нерастворима в воде и неполярных растворителях.		
	ROL1	Низкий (<0,5%)/L1			
	ROM0	Средний (0%)/М0			
	ROM1	Средний (0,5—2%)/М1			
	ROH0	Высокий (0%)/Н0			
	ROH1	Высокий (>2%)/Н1			
Синтетическая смола (RE)	REL0	Низкий (0%)/L0			
	REL1	Низкий (<0,5%)/L1	Синтетические флюсы могут иметь в основе разные смолы, часть из которых не претерпевает никаких изменений в процессе пайки (термопластичные смолы). Одни необратимо полимеризуются или сополимеризуются с остальными компонентами флюса и вследствие этого теряют способность		
	REM0	Средний (0%)/М0			
	REM1	Средний (0,5—2%)/М1	к отмывке (реактопласты), а другие являются продуктами реакции этерификации канифоли со спиртами или гликолями. Каждая смола характеризуется уникальными свойствами: температурой плавления,		
	REH0	Высокий (0%)/Н0	или гликолями. Лаждая смола харак геризуется уникальными своиствами: температурой плавления, способностью к растворению в различных растворителях, термическим поведением и т. п.		
	REH1	Высокий (>2%)/Н1			
	ORLO	Низкий (0%)/L0	ОR-флюсы основываются на растворимых в воде веществах органического происхождения. При этом не все ОR-флюсы являются кислотными, многие органические флюсы не содержат кислоты вообще — ни слабой, ни сильной. Чтобы оценить количество кислоты, содержащейся во флюсе, необходимо учитывать еще один важный параметр — кислотное число (или рН) водной вытяжки флюса. Чтобы судит о том, насколько сильной является кислота, используемая во флюсе, применяют тесты на коррозию — «медное зеркало» и коррозию медной пластины.		
Органические (OR)	ORL1	Низкий (<0,5%)/L1			
	ORM0	Средний (0%)/М0			
	ORM1	Средний (0,5—2%)/М1			
	ORH0	Высокий (0%)/Н0			
	ORH1	Высокий (>2%)/Н1			
Неорганические (IN)	INL0	Низкий (0%)/L0			
	INL1	Низкий (<0,5%)/L1			
	INM0	Средний (0%)/М0	Неорганические флюсы в электронике практически не используются, поэтому их рассмотрение считае		
	INM1	Средний (0,5—2%)/М1	нецелесообразным.		
	INH0	Высокий (0%)/Н0			
	INH1	Высокий (>2%)/Н1			

Отечественный производитель

ЗАО «Изагри» было создано в 1998 году в Московской области. Компания является разработчиком и производителем паяльных материалов: органических, синтетических и флюсов на водной основе (см. рис.1), паяльных паст, отмывочных жидкостей, свинецсодержащих и бессвинцовых припоев и др. Важно подчеркнуть, что полный спектр паяльных материалов «Изагри» позволяет обеспечить производство одним производителем для большинства технологических процессов, от флюсования до отмывки. Это в свою очередь обеспечивает совместимость различных химических препаратов при замене одного звена в цепи. При этом продукция «Изагри», отвечающая требованиям ГОСТ, ОСТ и международных стандартов (IEC — МЭК, IPC, JEDEK, ASTM, DIN и т. д.), обладает расширенным сроком службы до 3 лет, а ценовая политика не зависит от колебания курсов валют.

Расшифровка наименований флюсов производства «Изагри»

- ФР флюс органический, соответствует по составу RoHS, содержит различные растворители.
- ФРК флюс соответствует RoHS, на канифольной основе.
- ФВ флюс на водной основе.

коррозионное воздействие на металлы. Отмыть его с поверхности печатной платы довольно сложно, так как связать его в растворе отмывочной жидкости нечем. По этой причине для аппаратуры ответственного применения, как правило, не используются безгалоидные (менее 0,05%) флюсы.

В зависимости от основы флюсы подразделяются на канифольные (RO), синтетические (RE) или органические (OR) (см. табл. 1).

ЖИДКИЕ ФЛЮСЫ «ИЗАГРИ»

Органические флюсы «Изагри» (см. рис. 1) серий ФР544 и ФР529 предназначены для применения при пайке волной и двойной волной припоя, используемых в технологиях

Рис. 1. Флюс серии ФР529

монтажа компонентов в отверстия или смешанного монтажа. В их основе органические активаторы и растворители, способные испаряться под действием высоких температур пайки. Благодаря этому остатки после пайки минимальны и они легко смываются в том числе водой. При этом остатки флюсов после пайки волной обладают полной инертностью (см. табл. 2).

Водосмываемый флюс ФР544 предназначен для пайки по никелю, стали и поверхностям с плохой паяемостью. Однако его остатки обладают высокой коррозионной активностью и требуют обязательного удаления после пайки методом смывки деионизированной водой или отмывочной жидкостью ОФ-1.

При поверхностном монтаже ФР544 обеспечивает хорошую смачиваемость и заполнение отверстий. Он позволяет снизить риск возникновения перемычек и разбрызгивания припоя, что делает его наиболее функционально пригодным в поверхностном монтаже. Флюсы выпускаются с высокой активностью (ФР544–1) и низкой (ФР544–3).

Таблица 2. Основные характеристики флюсов производства «Изагри»

Обозначение	ФР544	ФВ529	ФР 544-3	ФРК525-3К	ФРК525-2А, ФРК525-3А
Тип флюса	Органический	Органический	Синтетический	Канифольный	Канифольный
	Жидкий	Жидкий	Жидкий	Флюс-гель	Флюс-гель
Цвет	Бесцветный	Бледно-палевый	Бесцветный	Красно-коричневый	Желтый
Запах	Спиртовой	Слабый запах жирных кислот	Слабый спиртовой	Слабый аммиачный	Слабый канифольный
Относительная плотность (г/см³, +25°C)	1,064	1,056		1,381	1,441
Содержание твердых веществ, %	5,8	6	3,2	ФРК525-3К-10: клейкость 120 г, ФРК525-3К-3: низкая клейкость	Клейкость 120 г
Содержание галогенов, %	Менее 0,05	Менее 0,05	Менее 0,05	Менее 0,05	Менее 0,05
Кислотность	ΦΡ544-3: ORLO ΦΡ 544-2ΦΓ: ORMO ΦΡ544-1: ORHO	ФВ529-1: ORHO ФВ529-2: ORMO ФВ529-3: ORLO	ORLO	ФРК525-3К: ROMO ФРК525-1: ROHO	ФРК525-2A: ROLO ФРК525-3A: ROMO
Электромиграция	Соответствует	Соответствует	Соответствует	Соответствует	Соответствует
Сопротивление изоляции остатков	5,4×109 Ом после 96 ч	4,8×109 Ом после 96 ч	4,8×109 Ом после 96 ч		
Растворитель	РГ–1 или гликоли	Деионизированная вода, ОФ-1	Деионизированная вода, ОФ-1	Вода, ОФ-1	ОФ-1 при необходимости
Срок хранения	2 года	2 года	2 года	3 года	3 года
Метод пайки	Пайка волной припоя Селективная Облуживание Ручная	Пайка волной припоя Селективная Облуживание Ручная	Пайка волной припоя Селективная Облуживание Ручная	Ручная пайка Поверхностный монтаж	Ручная пайка Поверхностный монтаж
Отмывка	Требуется	Не требуется	Не требуется	Требуется	Не требуется
Возможные аналоги	Hydro-X/20 Multicore 1095-NF Indium	WF9942 Indium WF7742 Indium X33-12i, MFR301, MF300, MF220 Multicore Multicore	R41-01i Multicore	Amtech LF-4300/4300-TF TACFlux 025 Indium	425-01 Multicore TACFlux Indium

Рис. 2. Флюс-гель серии ФРК525

Недостатком органических флюсов является их низкая температурная стойкость и стабильность, что требует более узкого окна технологического процесса пайки. Для решения этой проблемы «Изагри» предлагает безотмывочный флюс на водной основе серии ФВ529. Особенность данного флюса – возможность использования его как композиции, термически стабильной в широком диапазоне температур при процессе пайки. Благодаря высокой степени смачивания слой наносимого флюса достаточно тонкий и однородный, что позволяет снизить его расход в процессе пайки. Как и в случае с ФР544, флюсы выпускаются с разной активностью: низкой (ФВ529-3), средней (ФВ529-2) и высокой (ФВ529-1).

Отметим, что для ФР544 рекомендуется смывка, а ФВ529 является безотмывочным. Однако обратим внимание на содержание твердых частиц в обоих флюсах: 5,8 и 6% соответственно. А значит, оба флюса могут применяться как безотмывочные. Кроме того, оба флюса предназначены для работы как со свинцовыми, так и с бессвинцовыми припоями.

Нанесение жидких флюсов осуществляется методом пенного флюсования, распылением или погружением в емкость с флюсом. Таким образом, они пригодны для всех типов пайки – для пайки волной припоя, селективной, а также ручной пайки.

КЛЕЙКИЕ ФЛЮС-ГЕЛИ

Канифольные клейкие флюс-гели представлены серией ФРК525 (см. рис. 2). Флюс-гель имеет высокую клейкость и обеспечивает хорошую фиксацию компонента при пайке (см. табл. 2). После пайки остатки флюса при необходимости легко удаляются водой или промывочной жидкостью.

Флюс подходит для пайки электронных компонентов и полупроводников в ЧИП- и BGA/PGA-корпусах, всех чипрезисторов, конденсаторов, индуктивностей и т.д.

Активность флюса определяется цифрой на конце маркировки: ФРК525–1 с высокой активностью ROH0, –2 со средней ROM0 и −3 с низкой ROL0 (см. табл. 1).

Все слабоактивные канифольные флюсы являются безотмывочными. Активные флюсы (например, ФРК525–1 и ФРК525–3) рекомендуется смывать водой или отмывочной жидкостью ОФ-1. Выпускаются в шприцах-дозаторах и баночках по 30 и 100 мл.

Флюсы не содержат легколетучих соединений, а значит, безопасны для людей и не создают пожароопасную ситуацию. Также флюсы серии ФРК525, как, впрочем, все флюсы «Изагри», не содержат галогенов, которые снижают уровень электрических параметров печатной платы и способствуют возникновению коррозии.

ЛИТЕРАТУРА

1. Кузнецова Т. Пасты, припои, флюсы. Как выбрать материал, нужный именно вам//Технологии в электронной промышленности. 2011. № 6.

Www.platan.ru

Качество контролируется заводской лабораторией, оснащенной самым современным оборудованием Строгое соответствие требованиям ГОСТ, ОСТ и международным стандартам IEC - МЭК, IPC, JEDEK, ASTM, DIN и др.

ПАЯЛЬНЫЕ МАТЕРИАЛЫ

для ручной и автоматической пайки

- Флюсы
- Паяльные пасты
- Отмывочные жидкости

ИЗАГРИ

паяльные материалы

УЖЕ НА СКЛАДЕ!

Офисы в Москве: м. Молодежная, ул. Ивана Франко, 40, стр. 2, (495) 97 000 99, info@platan.ru;

м. Электрозаводская, ул. Б. Семеновская , 40, стр. 26, БЦ Агат, (495) 744 70 70, platan@platan.ru Офис в Санкт-Петербурге: ул. Зверинская, 44, (812) 232 88 36, baltika@platan.spb.ru